

International Transaction on Power and Energy Systems

ISSN No: XXXX-YYYY, www.itpes.in

Article

Implementation of Incremental Conductance MPPT Algorithm for Optimal Power Tracking in Solar PV Systems

S. Sathishkumar¹

¹Rajalakshmi Institute of Technology, Chennai, Tamil Nadu, India; Sathishkumar.s@ritchennai.edu.in Received: date; 15.04.2024 Accepted: date; 16.06.2024 Published: date; 20.06.2024

Abstract:

The efficient extraction of maximum power from photovoltaic (PV) systems is essential for their optimal performance. Maximum Power Point Tracking (MPPT) algorithms are widely used to ensure that solar panels operate at their maximum efficiency under varying environmental conditions. This paper presents the implementation and simulation of the Incremental Conductance (Inc. Conductance) MPPT algorithm for a 250W solar PV system using MATLAB. The algorithm operates based on the observation of incremental changes in the panel's power and voltage characteristics, enabling real-time tracking of the Maximum Power Point (MPP). The performance of the algorithm is demonstrated under both constant and varying irradiance conditions. A boost converter is used to regulate the power from the PV panel to a resistive load, ensuring consistent power output. The simulation results show that under constant irradiance conditions, the system successfully tracks the maximum power point at 250W. Furthermore, under varying irradiance, the algorithm adjusts the duty cycle, effectively optimizing power production at each irradiance level. The results emphasize the robustness and adaptability of the Incremental Conductance algorithm in dynamic operating environments. This work provides valuable insights into the application of MPPT techniques in solar energy systems, which is crucial for improving the efficiency and sustainability of renewable energy sources.

Keywords: Incremental Conductance, Maximum Power Point Tracking (MPPT), Photovoltaic (PV) Systems, Boost Converter, Irradiance Variation

1. Introduction

Photovoltaic (PV) systems have become a prominent source of renewable energy due to their environmental benefits and decreasing costs. However, the efficiency of PV systems depends heavily on operating conditions such as solar irradiance and temperature, which can fluctuate throughout the day. To ensure that PV systems operate at their maximum potential, Maximum Power Point Tracking (MPPT) algorithms are employed. MPPT algorithms adjust the operating voltage of the PV panel to find and maintain the maximum power point, thus optimizing power extraction.

One of the most effective MPPT algorithms is the Incremental Conductance (Inc. Conductance) method, which tracks the maximum power point by analyzing changes in the panel's power and voltage. Unlike traditional algorithms, the Inc. Conductance method considers both the voltage and current changes to determine the direction of the maximum power point. This paper focuses on the implementation of the Incremental Conductance MPPT algorithm in a MATLAB simulation environment for a 250W PV system. The study investigates the algorithm's behavior under varying irradiance conditions and assesses its performance in maximizing energy output. By employing this algorithm, the PV system can dynamically adjust its operating point to reflect changes in environmental conditions, improving overall energy efficiency.

2. Literature Review

The incremental conductance (IncCond) method is widely recognized as an effective MPPT technique for photovoltaic (PV) systems. Putri et al. (2015) investigated the IncCond method and demonstrated its capability to track the maximum power point (MPP) efficiently under varying environmental conditions such as solar irradiance and temperature changes. Simulation results revealed improved performance compared to traditional methods. However, the study primarily relied on simulations, with limited experimental validation, which may restrict its practical applicability [1]. Ilyas et al. (2018) further explored the application of the IncCond algorithm in PV systems. Their detailed analysis highlighted the robustness and efficiency of the algorithm under different environmental conditions. Experimental results validated theoretical predictions, showing significant enhancements in energy harvesting. Nonetheless, the study primarily addressed short-term experimental outcomes and did not extensively consider long-term stability and reliability in real-world scenarios [2].

.

Asoh et al. (2022) analyzed the performance of the IncCond algorithm under rapidly changing environmental conditions. Their findings underscored the algorithm's adaptability to fluctuations in solar irradiance and temperature, enabling it to maintain optimal power output. The study emphasized the importance of real-time data acquisition for improving MPPT efficiency. However, computational complexity and response time under extreme conditions were not thoroughly explored [3]. The implementation of the IncCond MPPT algorithm was discussed by Dhaouadi et al. (2019) in a PV system context. They highlighted the algorithm's design and its effectiveness in quickly converging to the MPP under varying conditions. Results suggested that the IncCond method outperformed other MPPT techniques. However, a lack of comprehensive performance comparisons with other methods limited the broader context of its effectiveness [4].

To address challenges in nonuniform operating conditions, Singh Chawda et al. (2020) proposed a hybrid approach combining the IncCond method with particle swarm optimization (PSO). This approach enhanced tracking efficiency under conditions such as partial shading, significantly improving energy output in simulations. Despite these advancements, the complexity of the hybrid algorithm posed challenges for real-time implementation, and trade-offs between computational efficiency and performance were not fully addressed [5]. Huynh and Dunnigan (2016) introduced an improved incremental conductance (INC) algorithm designed to enhance the tracking efficiency of the maximum power point (MPP) in solar PV panels. Their approach reduces convergence time and improves tracking accuracy under varying environmental conditions. However, the study relies primarily on simulations and does not extensively test the algorithm in extreme weather conditions, which limits its generalizability [6].

Shang et al. (2020) proposed an enhanced MPPT control strategy based on the INC algorithm, incorporating adaptive step size adjustments. This adaptation allows for faster MPP tracking and reduces oscillations around the MPP, resulting in better performance under dynamic conditions. Despite these improvements, the strategy's computational requirements and limited experimental validation may hinder its application in low-cost or diverse operational scenarios [7]. Siddique et al. (2020) developed a modified INC technique tailored for grid-connected PV systems. Their modifications enhance the algorithm's robustness under partial shading and varying load conditions, leading to improved energy yield. However, the proposed

modifications may not be universally applicable to all PV system types, and the complexity of implementation could be a barrier for smaller systems. Additionally, the study lacks testing under highly variable weather conditions [8].

Halder (2016) presented a straightforward implementation of the INC technique for MPPT in PV systems, highlighting its reliability and simplicity in tracking the MPP under various irradiance levels and temperature changes. While effective, the study does not explore advanced modifications or optimizations, limiting its applicability in more complex scenarios. Furthermore, the absence of extensive experimental validation raises concerns about the robustness of the findings [9]. Choudhary and Saxena (2014) explored the implementation of the INC MPPT algorithm using DC-DC buck and boost converters. Their study demonstrates the effectiveness of the algorithm in maximizing power extraction under varying load conditions and provides a detailed analysis of converter performance. However, the focus on theoretical aspects and reliance on specific converter types may restrict the algorithm's versatility and practical applicability across different PV configurations [10].

3. Block Diagram Representation of INC MPPT

The system begins with the PV panel generating electrical power based on available sunlight. This power is fed into the boost converter, which steps up the voltage to meet the requirements of the load. The INC algorithm ensures the PV panel operates at its MPP by dynamically adjusting the duty cycle of the PWM signal. This, in turn, regulates the boost converter's output voltage and ensures maximum power transfer. The load is powered with the optimized voltage and current, while continuous monitoring ensures the system adapts to changing environmental conditions, maintaining efficient operation throughout.

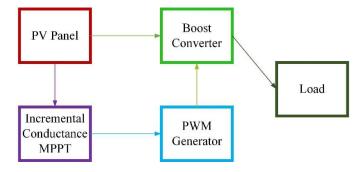


Figure 1 Block Diagram Representation of INC MPPT

PV Panel (250 W)

The PV panel serves as the primary source of energy, converting solar irradiance into electrical power. It operates based on the photovoltaic effect, where incident sunlight generates an electric current. The performance of the PV panel depends on two key inputs: irradiance, measured in W/m², and temperature in degrees Celsius. Higher irradiance levels generally increase the output power, while temperature variations influence efficiency. The panel's outputs are voltage (VPV) and current (IPV), which are multiplied to calculate the generated power

$$P_{PV} = V_{PV} \cdot I_{PV} \tag{1}$$

This power serves as the input to the subsequent components in the system.

Boost Converter

The boost converter is a DC-DC converter that steps up the voltage generated by the PV panel to a higher level required by the load. It comprises key components such as an inductor, capacitor, diode, and a switch (typically a MOSFET). During operation, the inductor stores energy when the switch is ON and releases it to the load when the switch is OFF, with the diode ensuring unidirectional current flow. A capacitor is employed to smooth out voltage fluctuations at the output. The duty cycle of the switch, controlled by the PWM generator, regulates the output voltage of the boost converter. The relationship between the input voltage (Vin), output voltage (Vout), and duty cycle (D) is expressed as

$$Vout=Vin/(1-D)$$
 (2)

Load

The load represents the electrical device or system that consumes power from the PV system. It is modeled using resistive elements (R1, R2, R3) to simulate real-world electrical behavior. The load parameters include load voltage (VLoad), load current (ILoad), and load power (PLoad), which are critical for system analysis.

Load power is calculated using the relationship

$$P_{Load} = V_{Load} \cdot I_{Load}$$
 (3)

By maintaining an appropriate voltage and current, the PV system ensures the load operates reliably, fulfilling its energy demand.

Incremental Conductance (INC) Algorithm

The INC algorithm is a Maximum Power Point Tracking (MPPT) technique designed to maximize the energy harvested from the PV panel. It operates by comparing the incremental conductance (dI/dV) of the PV panel to its instantaneous conductance (I/V). The algorithm adjusts the voltage to ensure the PV panel operates at its Maximum Power Point (MPP).

If the condition

dI/dV=-I/V is met, the MPP is achieved, and no further adjustment is needed.

If

dI/dV>-I/V, the voltage is increased to approach the MPP,

whereas if

dI/dV<-I/V, the voltage is decreased.

This control logic generates a duty cycle signal for the PWM generator, ensuring optimal performance under varying environmental conditions.

PWM Generator

The PWM (Pulse Width Modulation) generator translates the duty cycle signal from the INC algorithm into a PWM signal that controls the switch in the boost converter. By varying the ON and OFF times of the switch, the PWM generator regulates the energy transfer from the PV panel to the load. The output of the PWM generator directly influences the duty cycle (D), which in turn determines the output voltage of the boost

converter. Precise PWM control is essential for ensuring the system operates at the MPP, thereby maximizing the energy extracted from the PV panel.

Measurement Blocks

The measurement blocks are integral to monitoring and controlling the system's performance. These blocks measure the PV panel's voltage and current as well as the load's voltage and current. These measurements are used to calculate the power at the PV panel

$$P_{PV}=V_{PV}\cdot I_{PV}$$
 and the load $P_{Load}=V_{Load}\cdot I_{Load}$ (4)

This data is fed into the INC algorithm to determine the necessary adjustments to the duty cycle. Accurate measurement ensures the system operates efficiently, maintaining a balance between energy generation and consumption.

4. Simulation Results and Discussion

The provided simulation diagram represents the operation of a solar PV system using the Incremental Conductance (INC) Maximum Power Point Tracking (MPPT) algorithm. It consists of four key components: the PV panel, the boost converter, the INC MPPT block, and the load, with the PWM generator serving as the control mechanism between the INC MPPT and the boost converter.

The PV panel is the primary energy source, converting solar irradiance into electrical energy. Its output is fed to the Incremental Conductance MPPT block, which monitors the panel's voltage and current to calculate the instantaneous power. Based on the principle of incremental conductance, the MPPT block determines the maximum power point by comparing the incremental conductance (dI/dV) with the instantaneous conductance (I/V). It then generates a control signal corresponding to the duty cycle that ensures optimal operation of the PV panel.

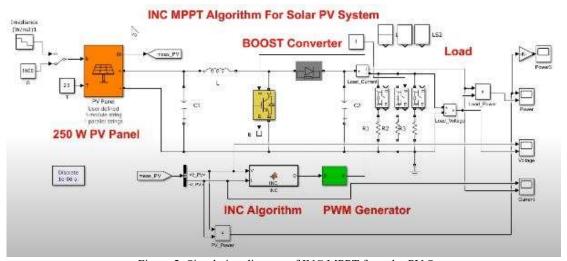
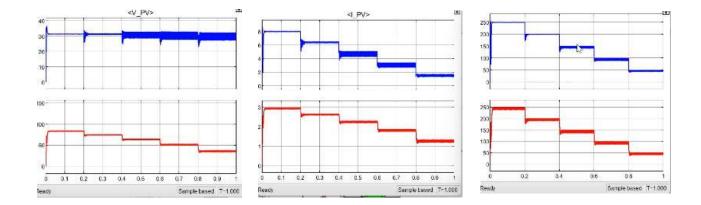



Figure 2. Simulation diagram of INC MPPT for solar PV System

The duty cycle signal is sent to the PWM generator, which converts it into a pulse-width modulated signal. This PWM signal regulates the switching of the boost converter. The boost converter steps up the voltage from the PV panel to a level suitable for the connected load. By dynamically adjusting the duty cycle, the boost converter ensures the PV system operates at its maximum power point, regardless of variations in solar irradiance or load conditions. Finally, the stepped-up voltage is delivered to the load, which consumes the generated power. The load can represent any electrical device or system that operates within the capacity of the PV system. The overall design ensures that the PV system operates efficiently, continuously tracking and extracting maximum power from the solar panel to meet the demands of the load.

The graphs demonstrate the ability of the INC MPPT algorithm to track the maximum power point efficiently under varying conditions. The stepwise adjustments in VPV, IPV, and PPV reflect the system's adaptive behavior. The stabilization of parameters after adjustments confirms that the system consistently operates at the MPP, ensuring maximum energy extraction from the solar panel.

PV Voltage (V_{PV})

The first graph (top-left) shows the voltage output of the PV panel over time. The stepwise behavior in VPV reflects the system's adjustment to track the maximum power point (MPP). As environmental conditions or load requirements change, the INC algorithm modifies the voltage to ensure the PV panel operates at its optimal point. This voltage stabilizes after adjustments, indicating the algorithm's success in maintaining MPP.

PV Current (IPV)

The second graph (top-center) represents the current output of the PV panel over time. Similar to the voltage, the current exhibits stepwise changes as the system adjusts to achieve MPP. A decrease in I_{PV} corresponds to lower irradiance or higher load resistance, while an increase corresponds to higher irradiance or lower resistance. The adjustments ensure that the power output remains maximized.

PV Power (PPV)

The third graph (top-right) displays the power output of the PV panel, which is the product of V_{PV} and I_{PV} . This plot highlights the effectiveness of the MPPT algorithm in extracting maximum power from the panel.

The stepwise nature of the power curve shows the system's response to changing conditions, with power stabilizing at the MPP after each adjustment.

5. Conclusion

The implementation and simulation of the Incremental Conductance (Inc. Conductance) MPPT algorithm for a 250W solar PV system demonstrated its effectiveness in optimizing power extraction under varying environmental conditions. The algorithm successfully tracked the maximum power point under both constant and dynamic irradiance levels, ensuring consistent and efficient energy harvesting. The use of a boost converter further enhanced system stability by regulating power output to a resistive load.

Simulation results highlighted the robustness and adaptability of the Incremental Conductance algorithm, making it a reliable choice for real-time MPPT in solar PV systems. This study underscores the importance of advanced MPPT techniques in improving the efficiency and sustainability of renewable energy systems. The findings provide valuable insights for future research and practical applications, particularly in the development of efficient and adaptable solar energy technologies.

Reference

- 1. Putri, R. I., Wibowo, S., & Rifa'i, M. (2015). Maximum power point tracking for photovoltaic using incremental conductance method. *Energy Procedia*, 68, 22-30.
- Ilyas, A., Ayyub, M., Khan, M. R., Jain, A., & Husain, M. A. (2018). Realization of incremental conductance the MPPT algorithm for a solar photovoltaic system. *International journal of ambient energy*, 39(8), 873-884.
- Asoh, D. A., Noumsi, B. D., & Mbinkar, E. N. (2022). Maximum power point tracking using the incremental conductance algorithm for PV Systems operating in rapidly changing environmental conditions. Smart Grid and Renewable Energy, 13(5), 89-108.
- Dhaouadi, G. U. I. Z. A., Djamel, O. U. N. N. A. S., Youcef, S. O. U. F. I., & Salah, C. (2019, September).
 Implementation of incremental conductance based MPPT algorithm for photovoltaic system. In 2019 4th International Conference on Power Electronics and their Applications (ICPEA) (pp. 1-5). IEEE.
- Singh Chawda, G., Prakash Mahela, O., Gupta, N., Khosravy, M., & Senjyu, T. (2020). Incremental
 conductance-based particle swarm optimization algorithm for global maximum power tracking of solar-PV under
 nonuniform operating conditions. *Applied Sciences*, 10(13), 4575.
- Huynh, D. C., & Dunnigan, M. W. (2016). Development and comparison of an improved incremental conductance algorithm for tracking the MPP of a solar PV panel. *IEEE transactions on sustainable energy*, 7(4), 1421-1429.
- Shang, L., Guo, H., & Zhu, W. (2020). An improved MPPT control strategy based on incremental conductance algorithm. Protection and Control of Modern Power Systems, 5(2), 1-8.
- Siddique, M. A. B., Khan, M. A., Asad, A., Rehman, A. U., Asif, R. M., & Rehman, S. U. (2020, November).
 Maximum power point tracking with modified incremental conductance technique in grid-connected PV array.
 In 2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA) (pp. 1-6). IEEE.
- 9. Halder, T. (2016, November). A maximum power point tracker (MPPT) using the incremental conductance (INC) technique. In 2016 7th India International Conference on Power Electronics (IICPE) (pp. 1-6). IEEE.
- 10. Choudhary, D., & Saxena, A. R. (2014). Incremental conductance MPPT algorithm for PV system implemented using DC-DC buck and boost converter. *Int. J. Eng. Res. Appl*, 4(8), 123-132.